edexcel

A PEARSON COMPANY

-

Mark Scheme (Results)

January 2016

Pearson Edexcel International A Level in Further Pure Mathematics 1 (WFM01/01) Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016 Publications Code IA043231 All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCELIAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking (But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2}+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x = ...

 $(ax^2+bx+c) = (mx+p)(nx+q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, \quad q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2016 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number		Scheme		Notes	Marks	
1. (a)	$\left\{ \left(3+2\mathrm{i}\right)\right\}$	(1-i) = 3-3i+2i+2 At least 3 correct terms				
		=5-i	=5-i (Correct answer o		A1 (2)	
(b)		$w^* = 1 + i$		Understanding that $w^* = 1 + i$	B1	
		$\left\{\frac{z}{w^*} = \right\} \frac{3+2i}{1+i} \times \frac{1-i}{1-i}$		Multiplies top and bottom by the conjugate of the denominator	M1	
	$\left\{=\frac{3-3}{2}\right\}$	$=\frac{3-3i+2i+2}{1+1} = \frac{5}{2} - \frac{1}{2}i \qquad \qquad \frac{5}{2} - \frac{1}{2}i \qquad \qquad \frac{5}{2} - \frac{1}{2}i \text{or} 2.5 - 0.5i$		A1		
	(.		Substitute	For - and uses Duthe same same star	(3)	
(c)	$\left \left \left 3+2i+k \right = \sqrt{53} \Longrightarrow \right \left \left(3+k\right)^2 + 4 \right = 53 \right = 53$		Substitutes	for <i>z</i> and uses Pythagoras correctly. Correct equation in any form	M1; A1	
	$(3+k)^2 + 4 = 53 \Longrightarrow (3+k)^2 = 49 \Longrightarrow k =$					
		$(3+k)^{2} + 4 = 53 \Longrightarrow (3+k)^{2} = 49 \Longrightarrow k$ or $(3+k)^{2} + 4 = 53 \Longrightarrow k^{2} + 6k - 40 = 0$ $\Longrightarrow (k-4)(k+10) = 0 = 0$		dependent on the previous M mark Attempt to solve for k	dM1	
			$\rightarrow \kappa -$	Both $\{k = \}4, -10$	A 1	
		$\{k = \} 4, -10$		Both $\{k = \}4, -10$	A1 (4)	
					9	
		(Question 1 N	otes		
1. (b)	Note	Alternative acceptable method:	<u>Alternative acceptable method:</u> $\left(\frac{z}{w^*}\right)\left(\frac{w}{w}\right) = \frac{zw}{\left w\right ^2} = \frac{5-i}{2} = \frac{5}{2} - \frac{1}{2}i$			
(b)	Note	Give A0 for writing down $\frac{5-i}{2}$ with	Give A0 for writing down $\frac{5-i}{2}$ without reference to $\frac{5}{2} - \frac{1}{2}i$ or $2.5 - 0.5i$			
	Note	Give B0M0A0 for writing down $\frac{5}{2} - \frac{1}{2}i$ from no working in part (b).				
	Note	Give B0M1A0 for $\frac{3+2i}{1-i} \times \frac{1+i}{1+i}$				
	Note Simplifying a correct $\frac{5}{2} - \frac{1}{2}i$ in part (b) to a final answer of $5-i$ is A0					
(c)	Note	Give final A0 if a candidate rejects	one of $k = 4$	or $k = -10$		
(b)	ALT	$\frac{3+2i}{1+i} = a + bi \mathbf{B1};$				
		$\Rightarrow 3+2i = (a+bi)(1+i) \Rightarrow 3 = a - a = a = a = a = a = a = a = a = a$	-b, 2 = a + b	$\Rightarrow a = \dots, b = \dots$ for M1 and $\frac{5}{2} - \frac{1}{2}$	i for A1	

Question Number		Scheme			Notes	Marks	
2.		$f(x) = x^2 - \frac{3}{\sqrt{x}} - \frac{4}{3x^2}$					
(a)		f(1.6) = -0.3325 f(1.7) = 0.1277			Attempts to evaluate both $f(1.6)$ and $f(1.7)$ and either $f(1.6) = awrt -0.3$ or $f(1.7) = awrt 0.1$	M1	
	e e	the therefore (a root) α is x = 1.6 and $x = 1.7$. ,		Both $f(1.6) = awrt -0.3$ and $f(1.7) = awrt 0.1$, sign change and conclusion.	A1 cso	
			-			(2)	
(b)	f'(<i>x</i>	$x) = 2x + \frac{3}{2}x^{-\frac{3}{2}} + \frac{8}{3}x^{-3}$	$x^2 \rightarrow \pm A$		At least one of either $r - \frac{3}{\sqrt{x}} \rightarrow \pm Bx^{-\frac{3}{2}}$ or $-\frac{4}{3x^2} \rightarrow \pm Cx^{-3}$ here A, B and C are non-zero constants.	M1	
					least 2 differentiated terms are correct	A1	
					Correct differentiation	A1	
-	$\left\{\alpha \simeq 1.6 - \frac{f(1.6)}{f'(1.6)}\right\} \Rightarrow \alpha \simeq 1.6 - \frac{-0.332541}{4.592200}$ dependent on the previous M mark Valid attempt at Newton-Rapshon using their values of f(1.6) and f'(1.6)					dM1	
	$\left\{ \alpha = 1.672414 \Rightarrow \right\} \alpha = 1.672$				dependent on all 4 previous marks 1.672 <i>on their first iteration</i> (Ignore any subsequent applications)	A1 cso cao	
	Correct derivative followed by correct answer scores full marks in (b) Correct answer with <u>no</u> working scores no marks in (b)						
				_		(5) 7	
			Quest	ion	2 Notes		
2. (a)	A1	A1 correct solution only. Candidate needs to state both $f(1.6) = awrt -0.3$ and $f(1.7) = awrt 0.1$ along with a reason and conclusion. Reference to change of sign or $f(1.6) \times f(1.7) < 0$ or a diagram or < 0 and > 0 o one positive, one negative are sufficient reasons. There must be a (minimal, not incorrect) conclusion, eg. root is in between 1.6 and 1.7, hence root is in interval, QED and a square are all acceptable. Ignore the presence or absence of any reference to continuity. A minimal acceptable reason and conclusion is "change of sign, hence root".				0 and > 0 or correct) a square are	
(b)	Note						
-	Note If the answer is incorrect it must be clear that we must see evidence of both $f(1.6)$ a being used in the Newton-Raphson process. So that just $1.6 - \frac{f(1.6)}{f'(1.6)}$ with an incorr						
	being used in the Newton-Raphson process. So that just $1.0 - \frac{1}{f'(1.6)}$ with an incompandent and no other evidence scores M0.						

Question Number		Scheme	Notes			Marks	
3.		$x^2 - 2x + 3$	B = 0				
(a) (i)		$\alpha + \beta = 2, \ \alpha\beta = 3$ Both $\alpha + \beta = 2, \ \alpha\beta = 3$				B1	
(ii)	$lpha^2$	$+\beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = \dots$	U		a correct identity for $\alpha^2 + \beta^2$ May be implied by their work)	M1	
		$=2^2-6=-2$ *		-2	from a correct solution only	A1 *	
(iii)	or =($(\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ $(\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$ Use of a correct identity for $\alpha^{3} + \beta^{3}$ (May be implied by their work)				M1	
		3-3(3)(2) = -10 2(-2-3) = -10		-10	from a correct solution only	A1	
						(5)	
(b)(i)	$\left(\alpha^2+\beta^2\right)^2$	$-2(\alpha\beta)^{2} = \alpha^{4} + 2(\alpha\beta)^{2} + \beta^{4} - 2(\alpha\beta)^{2} = \alpha^{4} + \beta^{4}$ Correct algebraic proof				B1 *	
(ii)	Sum = α^3	$n = \alpha^{3} + \beta^{3} - (\alpha + \beta) = -10 - 2 = -12$ Correct working without using explicit roots leading to a correct sum.				B1	
	Product =	$t = (\alpha^{3} - \beta)(\beta^{3} - \alpha) = (\alpha\beta)^{3} - (\alpha^{4} + \beta^{4}) + \alpha\beta$ Attempts to expand giving at least one term				M1	
		$= \left(\alpha\beta\right)^3 - \left(\left(\alpha^2 + \beta^2\right)^2 - 2\left(\alpha\beta\right)^2\right) +$	αβ				
		= 27 - (4 - 18) + 3 = 44			Correct product	A1	
	$\int x^2 - \operatorname{sum}$	$x + \text{product} = 0 \Longrightarrow $ $x^2 + 12x + 44 = 0$)	A	pplying $x^2 - (sum)x + product$	M1	
	(_	$x^2 + 12x + 44 = 0$	A1 (6)	
						(6) 11	
		Que	stion 3 N	lotes			
(a) (i)	1 st A1	$\alpha + \beta = -2, \ \alpha\beta = 3 \Longrightarrow \alpha^2 + \beta^2 =$	4 - 6 = -	-2 i	s M1A0 cso		
(b) (ii)	1 st A1	$\alpha + \beta = -2, \alpha\beta = 3 \Longrightarrow (\alpha\beta)^3 - (\alpha^4 + \beta^4) + \alpha\beta = 44$ is first M1A1					
(a)	Note	Note Applying $1+\sqrt{2}i$, $1-\sqrt{2}i$ explicitly in part (a) will score B0M0A0M0A0					
(b)	Note						
(a)	Note	Finding $\alpha + \beta = 2$, $\alpha\beta = 3$ by writing	down or	appl	ying $1 + \sqrt{2}i$, $1 - \sqrt{2}i$ but then	writing	
		$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = 2^{2} - 6 = -$				-	
		scores B0M1A0M1A0 in part (a). Su	ich candi	dates	will be able to score all marks		
(b)(ii)	Nota	they use the method as detailed on the A correct method leading to a candid				ng a final	
(D)(11)	Note	A correct memou leading to a candid	are statin	g p=	-1, q - 12, r - 44 without write	ing a mai	

Question Number	Scheme		Notes	Marks			
4. (a)	Rotation		Rotation	B1			
	225 degrees (anticlockwise)	225 degrees or $\frac{5\pi}{4}$ (anticlockwise) or 135 degrees clockwise	B1 o.e.				
	about (0, 0)	ark is dependent on at least one of the previous B marks being awarded. out (0, 0) or about <i>O</i> or about the origin	dB1				
	Note: Give 2 nd B0 for 225 degrees clock				(3)		
(b)	$\{n=\} 8$		8	B1 cao			
(c) Way 1	$\mathbf{A}^{-1} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \text{ or } \begin{pmatrix} -\frac{\sqrt{2}}{2} & -\frac{1}{\sqrt{2}} \\ \frac{\sqrt{2}}{2} & -\frac{1}{\sqrt{2}} \end{pmatrix}$	$\begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}$	Correct matrix	B1	(1)		
	$\left\{\mathbf{B} = \mathbf{C}\mathbf{A}^{-1}\right\} = \begin{pmatrix} 2 & 4 \\ -3 & -5 \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt$	$ \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \dots $	Attempts CA ⁻¹ and finds at least one element of the matrix B	M1			
	$= \begin{pmatrix} \sqrt{2} & -3\sqrt{2} \\ -\sqrt{2} & 4\sqrt{2} \end{pmatrix}$	dej	Dendent on the previous B1M1 marks At least 2 correct elements	A1			
	$\begin{pmatrix} -\sqrt{2} & 4\sqrt{2} \end{pmatrix}$		All elements are correct	A1			
					(4)		
(c) Way 2	$\left\{\mathbf{BA} = \right\} \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array}\right) = \left(\begin{array}{cc} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array}\right)$	$\left.\begin{array}{cc}2&4\\-3&-5\end{array}\right)$	Correct statement using 2×2 matrices. All 3 matrices must contain four elements. (Can be implied). (Allow one slip in copying down C)	B1			
	$-\frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} = 2, \frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} = 4$ $-\frac{c}{\sqrt{2}} - \frac{d}{\sqrt{2}} = -3, \frac{c}{\sqrt{2}} - \frac{d}{\sqrt{2}} = -3$ and finds at least one of either a er b	-5	Applies $BA = C$ and attempts simultaneous equations in <i>a</i> and <i>b</i> or <i>c</i> and <i>d</i> and finds at least one of either <i>a</i> or <i>b</i> or <i>c</i> or <i>d</i>	M1			
	and finds at least one of either <i>a</i> or <i>b</i> $= \begin{pmatrix} \sqrt{2} & -3\sqrt{2} \\ -\sqrt{2} & 4\sqrt{2} \end{pmatrix}$		pendent on the previous B1M1 marks At least 2 correct elements	A1			
	or $a = \sqrt{2}, b = -3\sqrt{2}, c = -\sqrt{2}, d = 4\sqrt{2}$		All elements are correct				
					(4)		
		Omant	A Notos		8		
4. (a)	Note Condone "Turn" for the 1 st	-	on 4 Notes				
4. (a) (c)	NoteCondone "Turn" for the 1st B1 mark.NoteYou can ignore previous working prior to a candidate finding CA-1						
	(i.e. you can ignore the state	ements $\mathbf{C} = \mathbf{C}$	BA or $\mathbf{C} = \mathbf{AB}$).				
	A1 A1 You can allow equivalent m	natrices/value	es, e.g. $\begin{pmatrix} \frac{2}{\sqrt{2}} & -\frac{6}{\sqrt{2}} \\ -\frac{2}{\sqrt{2}} & \frac{8}{\sqrt{2}} \end{pmatrix}$				

Question Number		Scheme		Note	S	Marks	
5. (a)	$\left\{\sum_{n=1}^{n} 8r^{3}-\right.$	$-3r \bigg\} = 8 \bigg(\frac{1}{4} n^2 (n+1)^2 \bigg) - 3 \bigg(\frac{1}{2} n (n+1)^2 \bigg) \bigg)$		Attempt to substitute standard formulae	at least one of the correctly into the given expression	M1	
	L <i>r</i> =1	j (. , , (<u>-</u>	/	(Correct expression	A1	
		$=\frac{1}{2}n(n+1)[4n(n+1)-3]$ dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having used both standard formulae correctly				dM1	
		$=\frac{1}{2}n(n+1)\left[4n^2+4n-3\right]$		{this step does not h	ave to be written}		
		$= \frac{1}{2}n(n+1)[4n^2+4n-3]$ $= \frac{1}{2}n(n+1)(2n+3)(2n-1)$		Correct complet	tion with no errors	A1 cso	
						(4)	
(b)	Let $f(n)$:	$=\frac{1}{2}n(n+1)(2n+3)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n+3)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n+3)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n+3)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n+3)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n+3)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n+3)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n+3)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1)(2n-1), g(n)=\frac{8}{4}n(n+1)(2n-1)$	$n^2(n+1)$	$h(n) = \pm \frac{3}{2}n(n + \frac{3}{2}n)$	1)		
	$\left\{\sum_{r=5}^{10} 8r^3 - \right.$	$\left\{\sum_{r=5}^{10} 8r^3 - 3r\right\} = \frac{1}{2}(10)(11)(23)(19) - \frac{1}{2}(4)(5)(11)(7)$ $\left\{= 24035 - 770 = 23265\right\}$ Attempts to find either • f(10) and f(4) or f(5) • g(10) and g(4) or g(5) and h(10) and h(4) or h(5)				M1	
	r=5	$\sum_{r=5}^{10} kr^2 = k \left(\frac{1}{6} (10)(11)(21) - \frac{1}{6} (4)(5)(9) \right) \left\{ = k(385 - 30) = 355k \right\}$ or $= k \left(5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 \right) \left\{ = 355k \right\}$ Correct attempt at $\sum_{r=5}^{10} kr^2$				M1	
	$\frac{dependent \text{ on both previous } M}{dependent \text{ on both previous } M}$ $\frac{dependent \text{ on both previous } M}{Uses \text{ both previous method mark red}}$ $\frac{dependent \text{ on both previous } M}{Uses \text{ both previous method mark red}}$ $\frac{dependent \text{ on both previous } M}{Uses \text{ both previous method mark red}}$ $\frac{dependent \text{ on both previous } M}{Uses \text{ both previous method mark red}}$ $\frac{dependent \text{ on both previous } M}{Uses \text{ both previous method mark red}}$ $\frac{dependent \text{ on both previous } M}{Uses \text{ both previous method mark red}}$ $\frac{dependent \text{ on both previous } M}{Uses \text{ both previous method mark red}}$ $\frac{dependent \text{ on both previous } M}{Uses \text{ both previous method mark red}}$ $\frac{dependent \text{ on both previous } M}{Uses \text{ both previous method mark red}}$				od mark results to k using 22768 and ves to give $k =$	ddM1	
				$k = -\frac{497}{355}$ or $-\frac{7}{5}$ or $-\frac{7}{5}$	A1 o.e.		
						(4)	
		C	Duestion	1 5 Notes		0	
5. (a)	Note	Applying eg. $n = 1$, $n = 2$ to the printed equation without applying the standard formula to give $a = 2$, $b = -1$ is M0A0M0A0				ula	
	Alt	Alternative Method: Using $2n^4$ +		$n^2 - \frac{3}{2}n \equiv an^4 + (b + \frac{5}{2})$	$a)n^{3} + (\frac{5}{2}b + \frac{3}{2}a)n^{2}$	$+\frac{3}{2}bn$ o.e.	
	dM1 A1 cso	Equating coefficients to give both $a = 2, b = -1$ Demonstrates that the identity works for all of its terms					
(b)	Note	$f(10) - f(5) = \frac{1}{2}(10)(11)(23)(19) - \frac{1}{2}(5)(6)(13)(9) \left\{ = 24035 - 1755 = 22280 \right\}$					
	Note	• $(24200 - 165 + 385k) - (80)$	Applying $\sum_{r=5}^{10} 8r^3 - \sum_{r=5}^{10} 3r + k \sum_{r=5}^{10} r^2$ gives either • $(24200 - 165 + 385k) - (800 - 30 + 30k) = 22768$				
	Note	• $23400 - 135 + 355k = 2276$ 985 + 25k + 1710 + 36k + 2723 + 49 is fine for the first two M1M1 marks	k + 407			265 + 355 <i>k</i>	

Question Number	Scheme	Notes	Marks			
6. (a)	$y = \frac{c^2}{x} = c^2 x^{-1} \implies \frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2}$ $xy = c^2 \implies x \frac{dy}{dx} + y = 0$	$\frac{dy}{dx} = k x^{-2}$ Correct use of product rule. The sum of two terms, one of which is correct.	M1			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}p} \cdot \frac{\mathrm{d}p}{\mathrm{d}x} = -\frac{c}{p^2} \cdot \frac{1}{c}$	their $\frac{dy}{dp} \times \frac{1}{\text{their}} \frac{dx}{dp}$				
	$\frac{dy}{dx} = -c^2 x^{-2}$ or $x\frac{dy}{dx} + y = 0$ or $\frac{dy}{dx} = -\frac{c}{p^2} \cdot \frac{1}{c}$ Correct differentiation					
	$\mathrm{So}, m_N = p^2$	Perpendicular gradient rule where $m_N (\neq m_T)$ is found from using calculus.	M1			
	$y - \frac{c}{p} = p^2 (x - cp)$ or $y = p^2 x + \frac{c}{p} - cp^3$	Correct line method where m_N is found from using calculus.	M1			
	$py - p^3 x = c\left(1 - p^4\right)^*$		A1*			
			(5)			
(b)	$y = \frac{c^2}{x} \Longrightarrow p \frac{c^2}{x} - p^3 x = c(1 - p^4) \text{ or } x = \frac{c^2}{y} \Longrightarrow py - p^3 \frac{c^2}{y} = c(1 - p^4)$					
	Substitutes $y = \frac{c^2}{p}$ or $x = \frac{c^2}{y}$ into the printed equation					
	to obtain an equation in either x, c and p only or in y, c and p only. $p^{3}x^{2} + c(1-p^{4})x - c^{2}p = 0$ or $py^{2} - c(1-p^{4})y - c^{2}p^{3} = 0$					
	$p^{3}x^{2} + c(1-p^{4})x - c^{2}p = 0$ or $py^{2} - c(1-p^{4})y - c^{2}p^{3} = 0$					
	$(x-cp)(p^3x+c)=0 \Rightarrow x= \text{ or } (y-\frac{c}{p})(yp+cp^4)=0 \Rightarrow y=$					
	Correct attempt of solving a 3TQ to f	Find the x or y coordinate of Q	A1			
	$Q\left[-\frac{c}{r^3}, -cp^3\right]$ Can be sin	Find the x or y coordinate of Q mplified orAt least one correct coordinate.simplified.Both correct coordinates	A1 A1			
	Note: If <i>Q</i> is stated as coordinates then they mus		A1 (4)			
(b) ALT	Let Q be $\left(cq, \frac{c}{q}\right)$ so $\frac{c}{q}p$ -		M1			
	Substitutes $x = cq$ or $y = \frac{c}{q}$ into the printed equation	ion to obtain an equation in only p , c and q .				
	$cp - p^{3}cq^{2} = cq - cqp^{4} \Rightarrow p - q - p^{3}q^{2} + qp^{4} = 0$					
	$\frac{1}{\left(p-q\right)\left(1+p^{3}q\right)=0 \Rightarrow q=\dots}$					
	Correct attempt to find		M1			
		nplified or At least one correct coordinate	A1			
	$\mathcal{Q}\left(-\frac{1}{p^{3}},-cp\right)$ un-s	simplified. Both correct coordinates	A1			
			(4)			
			9			

Question Number	Sahama			Notes	Marks	
7.	$f(x) = x^4 - 3x^3 - 15x^2 + 99x - 130$					
(a)	3 – 2i is also a root			3 – 2i	B1	
	or any v		Attempt to expand $(x - (3 + 2i))(x - (3 - 2i))$ valid method to establish the quadratic factor e.g. $x = 3 \pm 2i \Rightarrow x - 3 = \pm 2i \Rightarrow x^2 - 6x + 9 = -4$		M1	
	-		01	r sum of roots 6, product of roots 13	A1	
	$f(x) = (x^2 - 6x + 13)(x^2 + 3x - 10)$ $x^2 - 6x + 13$ Attempt other quadratic factor Note: Using long division to get as far a $x^2 \pm kx$ is fine for this mark		M1			
				$x^2 + 3x - 10$	A1	
	${x^{2}+3x-10} = {(x+5)(x-2)} =$	$\Rightarrow x = \dots$		Correct method for solving a 3TQ on their 2 nd quadratic factor	M1	
	x = -5, x = 2			Both values correct	A1	
	Note: Writing down 2, -5, 3+	- 2i 3_2i wi	th no wo	rking is B1M040M040M040	(7)	
(a)	-	ative using Fa		-		
(a)	3 – 2i	tive using ra		<u>3 – 2i</u>	B1	
	$ \{f(2) = \} 2^{4} - 3 \times 2^{3} - 15 \times 2^{2} + 99 \times 2 - 130 = 0 $ $ \{f(-5) = \} (-5)^{4} - 3(-5)^{3} - 15(-5)^{2} + 99 \times (-5) - 130 = 0 $			Attempts to find $f(2)$	M1	
				Shows that $f(2) = 0$	A1	
				Attempts to find $f(-5)$	M1	
		· · /		Shows that $f(-5) = 0$	A1	
	x = 2, x = -5	E		by that $f(2) = 0$ and states $x = 2$ vs that $f(-5) = 0$ and states $x = -5$	M1	
	x - 2, x - 3			Shows both $f(2) = 0$ & $f(-5) = 0$ and states both $x = -5$, $x = 2$	A1	
				, , , , , , , , , , , , , , , , , , ,	(7)	
(b)	Im 2	<u> </u>		 3±2i plotted correctly in quadrants 1 and 4 with some evidence of symmetry dependent on the final M mark being awarded in part (a). Their other two roots plotted correctly. 		
	-5	2 3	→ Re	Satisfies at least one of the criteria.	B1ft	
	-2			Satisfies both criteria with some indication of scale or coordinates stated. All points (arrows) must be in the correct positions relative to each other.	B1ft	
					(2)	
					9	

Question Number		Scheme			1	Notes	Marks
8.	<i>S</i> (<i>a</i> ,0)	$, B(q,r), C\left(-a, -\frac{2ar}{q-a}\right)$ or	C(-a, -3)	3ar)			
(a)		$m = \frac{r - 0}{q - a}$			Correct gradien	t using $(a, 0)$ and (q, r) (Can be implied)	B1
	•	$v = \frac{r}{q-a}(x-a) \text{ or}$ $y-r = \frac{r}{q-a}(x-q)$ $0 = \frac{ra}{q-a} + "c" \Longrightarrow "c" = -\frac{1}{q}$ $0 = \frac{ra}{q-a} + [c-a] = -\frac{1}{q}$	$\frac{ra}{-a}$ and	$y = \frac{1}{q}$	$\frac{r}{-a}x - \frac{ra}{q-a}$	Correct straight line method	M1
	leading to	$p (q-a)y = r(x-a)^*$				cso	A1*
	1	-)					(3)
(b)	$C\left(\left\{-a\right\}\right)$	$\left(,-\frac{2ar}{q-a}\right)$ or height OCS =	$=\frac{2ar}{q-a}$			$-\frac{2ar}{q-a}$ or $\frac{2ar}{q-a}$	B1
	$\frac{2ar}{q-a} = 3$	Br or $\frac{1}{2}(a)\left(\frac{2ar}{q-a}\right) = 3\left(\frac{2ar}{q-a}\right)$	$\left(\frac{1}{2}\right)(a)(r)$	⇒	Area and rearra	and OCS = $3r$ or applies a(OSC) = 3 Area(OSB) anges to give $\lambda a = \mu q$ μq are numerical values.	M1
		$\Rightarrow 5a = 3q$				$5a = 3q \text{ or } a = \frac{3}{5}q$	A1
		$C) = 4\left(\frac{1}{2}\right)\left(\frac{3q}{5}\right)r$ or $= \left(\frac{1}{2}\right)\left(\frac{3q}{5}\right)r + \left(\frac{3}{2}\right)\left(\frac{3q}{5}\right)r$)r		Uses their $a = \frac{3}{5}$ meth	the previous M mark q and applies a correct nod to find Area(<i>OBC</i>) in terms of only q and r	dM1
		$=\frac{6}{5}qr(*)$				$\frac{6}{5}qr$	A1* cso
							(5)
	Altomat	ive Method (Similar Triang	alac)	1			8
(b)	$\frac{3r}{2a} = \frac{r}{q-1}$		<u> </u>		<u>3r</u> 2a	$\frac{r}{a} = \frac{r}{q-a}$ or equivalent	B1
	$\frac{3r}{2a} = \frac{r}{q}$	$\frac{3r}{2a} = \frac{r}{q-a} \text{ or equivalent and rearranges}$ to give $\lambda a = \mu q$ where λ, μ are numerical values.				M1	
	then a	pply the original mark sch					
8. (a)	Note	The first two marks B1M1	can be gai	ined to	8 Notes gether by applying	the formula $\frac{y - y_1}{y_2 - y_1} = \frac{x_1}{x_2}$	$\frac{x-x_1}{x-x_2}$
		to give $\frac{y-0}{r-0} = \frac{x-a}{q-a}$				<u>, , , , , , , , , , , , , , , , , , , </u>	2 1
(b)	Note	If a candidate uses either	$-\frac{2ar}{q-a}$ or	-3r t	hey can get 1 st M1	but not 2^{nd} M1 in (b).	

$f(1) = 4^{2} + 5 = 21$ $(k+1) - f(k) = 4^{k+2} + 5^{2(k+1)-1} - (4^{k+1} + 5^{2k-1})$ $(k+1) - f(k) = 3(4^{k+1}) + 24(5^{2k-1})$ $= 3(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$ or $= 24(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$ $f(k+1) = 3f(k) + 21(5^{2k-1}) + f(k)$ or $f(k+1) = 24f(k) - 21(4^{k+1}) + f(k)$ If the result is true for $n = k$, then it is true for $n = 1$, then the	Either def e for $n = k + 1$ result is <u>is tr</u>	f(1) = 21 is the minimum Attempts $f(k+1) - f(k)$ 3(4 ^{k+1} +5 ^{2k-1})or 3f(k); 21(5 ^{2k-1}) 24(4 ^{k+1} +5 ^{2k-1})or 24f(k); -21(4 ^{k+1}) bendent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject , As the result has been shown to be	B1 M1 A1; A1 dM1 A1 cso (6)		
$\frac{(k+1) - f(k) = 4^{k+2} + 5^{2(k+1)-1} - (4^{k+1} + 5^{2k-1})}{(k+1) - f(k) = 3(4^{k+1}) + 24(5^{2k-1})}$ $= 3(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$ or $= 24(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$ $f(k+1) = 3f(k) + 21(5^{2k-1}) + f(k)$ or $f(k+1) = 24f(k) - 21(4^{k+1}) + f(k)$ If the result is true for $n = k$, then it is true for $n = 1$, then the for $n = 1$, then the for $n = 1$, then the for $n = 1$.	Either def e for $n = k + 1$ result is <u>is tr</u>	Attempts $f(k+1) - f(k)$ $3(4^{k+1} + 5^{2k-1}) \text{ or } 3f(k); 21(5^{2k-1})$ $24(4^{k+1} + 5^{2k-1}) \text{ or } 24f(k); -21(4^{k+1})$ Dendent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject , As the result has been shown to be	M1 A1; A1 dM1 A1 cso		
$\frac{(k+1) - f(k) = 3(4^{k+1}) + 24(5^{2k-1})}{= 3(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})}$ or = 24(4 ^{k+1} + 5 ^{2k-1}) - 21(4 ^{k+1}) f(k+1) = 3f(k) + 21(5^{2k-1}) + f(k) or f(k+1) = 24f(k) - 21(4 ^{k+1}) + f(k) If the result is true for n = k, then it is true true for n = 1, then the General Method	Either def e for $n = k + 1$ result is <u>is tr</u>	$3(4^{k+1}+5^{2k-1}) \text{ or } 3f(k); 21(5^{2k-1})$ $24(4^{k+1}+5^{2k-1}) \text{ or } 24f(k); -21(4^{k+1})$ Dendent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject , As the result has been shown to be	A1; A1 dM1 A1 cso		
$= 3(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$ or $= 24(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$ $f(k+1) = 3f(k) + 21(5^{2k-1}) + f(k)$ or $f(k+1) = 24f(k) - 21(4^{k+1}) + f(k)$ If the result is <u>true for $n = k$, then it is true for $n = 1$, then the <u>true for $n = 1$, then the</u> General Method</u>	$\frac{\text{deg}}{\text{e for } n = k + 1}$ result is is the second	24($4^{k+1}+5^{2k-1}$) or 24f(k); -21(4^{k+1}) bendent on at least one of the previous accuracy marks being awarded. Makes f(k+1) the subject , As the result has been shown to be	dM1 A1 cso		
or = $24(4^{k+1} + 5^{2^{k-1}}) - 21(4^{k+1})$ $f(k+1) = 3f(k) + 21(5^{2^{k-1}}) + f(k)$ or $f(k+1) = 24f(k) - 21(4^{k+1}) + f(k)$ If the result is true for $n = k$, then it is true true for $n = 1$, then the General Method	$\frac{\text{deg}}{\text{e for } n = k + 1}$ result is is the second	24($4^{k+1}+5^{2k-1}$) or 24f(k); -21(4^{k+1}) bendent on at least one of the previous accuracy marks being awarded. Makes f(k+1) the subject , As the result has been shown to be	dM1 A1 cso		
$f(k+1) = 3f(k) + 21(5^{2k-1}) + f(k)$ or $f(k+1) = 24f(k) - 21(4^{k+1}) + f(k)$ If the result is <u>true for $n = k$</u> , then it is <u>true for $n = 1$</u> , then the General Method	$\frac{\text{deg}}{\text{e for } n = k + 1}$ result is is the second	pendent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject , As the result has been shown to be	dM1 A1 cso		
or $f(k+1) = 24f(k) - 21(4^{k+1}) + f(k)$ If the result is true for $n = k$, then it is true true for $n = 1$, then the General Method	e for $n = k + 1$ result is <u>is tr</u>	accuracy marks being awarded. Makes $f(k+1)$ the subject , As the result has been shown to be	A1 cso		
If the result is true for $n = k$, then it is true true for $n = 1$, then the General Method	result is $\underline{is tr}$	Makes $f(k+1)$ the subject , As the result has been shown to be	A1 cso		
true for $n = 1$, then the General Method	result is $\underline{is tr}$				
General Method		rue for all $n \in \square^+$.			
	: Using f(k		(6		
	Using f(k				
$f(1) = 4^2 + 5 = 21$	8 (1	General Method: Using $f(k+1) - mf(k)$			
		f(1) = 21 is the minimum	B1		
$f(k+1) - mf(k) = 4^{k+2} + 5^{2(k+1)-1} - m(4^{k+1} + 5^{2k-1})$		Attempts $f(k+1) - f(k)$	M1		
$(k+1) - mf(k) = (4-m)(4^{k+1}) + (25-m)(5)$	$^{2k-1})$				
$= (4-m)(4^{k+1}+5^{2k-1})+21(5^{2k-1}) $ (4-n)		$m(4^{k+1}+5^{2k-1})$ or $(4-m)f(k); 21(5^{2k-1})$	A1; A1		
or = $(25-m)(4^{k+1}+5^{2k-1}) - 21(4^{k+1})$	(25 - m)	$h(4^{k+1}+5^{2k-1})$ or $(25-m)f(k); -21(4^{k+1})$	AI, AI		
)	accuracy marks being awarded.	dM1		
	·				
			A1 cso		
$f(1) = 4^2 + 5 = 21$		f(1) = 21 is the minimum	B1		
$f(k+1) = 4^{k+2} + 5^{2(k+1)-1}$		Attempts $f(k+1)$	M1		
$f(k+1) = 4(4^{k+1}) + 25(5^{2k-1})$					
$= 4(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$		$4(4^{k+1}+5^{2k-1})$ or $4f(k); 21(5^{2k-1})$			
or = $25(4^{k+1}+5^{2k-1}) - 21(4^{k+1})$	Either -	$25(4^{k+1}+5^{2k-1})$ or $25f(k); -21(4^{k+1})$	A1; A1		
$f(k+1) = 4f(k) + 21(5^{2k-1})$ or $f(k+1) = 25f(k) - 21(4^{k+1})$	der	accuracy marks being awarded.	dM1		
If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be					
or or or or	$= (4 - m)(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$ $= (25 - m)(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$ $f(k + 1) = (4 - m)f(k) + 21(5^{2k-1}) + mf(k)$ $f(k + 1) = (25 - m)f(k) - 21(4^{k+1}) + mf(k)$ If the result is true for $n = k$, then it is true for $n = 1$, then the true for $n = 4(4^{k+1} + 5^{2(k+1)-1})$ $k + 1) = 4(4^{k+1}) + 25(5^{2k-1})$ $= 4(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$ or $= 25(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$ $f(k + 1) = 4f(k) + 21(5^{2k-1})$ $f(k + 1) = 25f(k) - 21(4^{k+1})$ If the result is true for $n = k$, then it is true for $n = 1$, then the true for $n = 1$.	$= (25-m)(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$ (25-m) $f(k+1) = (4-m)f(k) + 21(5^{2k-1}) + mf(k)$ $f(k+1) = (25-m)f(k) - 21(4^{k+1}) + mf(k)$ If the result is true for $n = k$, then it is true for $n = k + 1$ true for $n = 1$, then the result is is the for $n = k + 1$ $f(1) = 4^{2} + 5 = 21$ $k+1) = 4^{k+2} + 5^{2(k+1)-1}$ $k+1) = 4(4^{k+1}) + 25(5^{2k-1})$ $= 4(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$ $f(k+1) = 4f(k) + 21(5^{2k-1})$ $f(k+1) = 25f(k) - 21(4^{k+1})$ If the result is true for $n = k$, then it is true for $n = k + 1$ true for $n = 1$, then the result is is true for $n = k + 1$	= $(4-m)(4^{k+1}+5^{2k-1})+21(5^{2k-1})$ $(4-m)(4^{k+1}+5^{2k-1}) \text{ or } (4-m)f(k); 21(5^{2k-1})$ = $(25-m)(4^{k+1}+5^{2k-1})-21(4^{k+1})$ $(25-m)(4^{k+1}+5^{2k-1}) \text{ or } (25-m)f(k); -21(4^{k+1})$ f(k+1) = $(4-m)f(k)+21(5^{2k-1})+mf(k)$ dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be true for $n = 1$, then the result is is true for all $n \in \square^+$. f(1) = $4^2 + 5 = 21$ f(1) = 21 is the minimum $k+1) = 4(4^{k+1}+5^{2k-1})+21(5^{2k-1})$ e $4(4^{k+1}+5^{2k-1})+21(5^{2k-1})$ Either $4(4^{k+1}+5^{2k-1}) \text{ or } 4f(k); 21(5^{2k-1})$ or $= 25(4^{k+1}+5^{2k-1})-21(4^{k+1})$ Either $4(4^{k+1}+5^{2k-1}) \text{ or } 25f(k); -21(4^{k+1})$ f(k+1) = $4f(k) + 21(5^{2k-1})$ Either $4(4^{k+1}+5^{2k-1}) \text{ or } 25f(k); -21(4^{k+1})$ f(k+1) = 25f(k) - 21(4^{k+1}) $4(4^{k+1}+5^{2k-1}) \text{ or } 25f(k); -21(4^{k+1})$ f(k+1) = 25f(k) - 21(4^{k+1}) $4(k+1+5^{2k-1}) \text{ or } 25f(k); -21(4^{k+1})$ if the result is true for $n = k$, then it is true for $n = k+1$, As the result has been shown to be true for $n = 1$, then the result is is true for all $n \in \square^+$.		

•	$\left\{ f(k+1) = 4f(k) + 21(5^{2k-1}) \right\} \Rightarrow f(k+1) = 84M + 21(5^{2k-1})$
•	$\left\{ f(k+1) = 25f(k) - 21(4^{k+1}) \right\} \Longrightarrow f(k+1) = 525M - 21(4^{k+1})$

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom